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We consider the higher-order Fierz transformation, which corresponds to expand-
ing a product ofψ̄0ψ terms into a sum of products of Dirac densities and currents.
It is shown that the Fierz transformation can be obtained by solving a large system
of linear equations with fractional complex coefficients, which is practical at least
up to fourth power. c© 2001 Academic Press

Key Words:Dirac algebra; Fierz transformation; relativistic quantum mechanics.

1. THE PROBLEM

Fierz transformation[1] is a name given to the expression of a certain product of
nondiagonal matrix elements of Dirac0-matrices as an expansion into products of diagonal
matrix elements, such as

(ā0i b)(b̄0 j a) =
16∑

k,l=1

ckl(ā0ka)(b̄0l b). (1)

Here0i stands for one of the 16 Dirac matrices{1, γ5, γµ, γ5γµ, σµν} constituting a linearly
independent basis in the space of complex 4× 4 matrices. The matrix elements denote
products in Dirac-index space only, i.e.,

(ā0i b) = ψ̄a(r , t) 0i ψb(r , t). (2)

The Fierz transformation is useful for expressing exchange matrix elements in terms of
densities, currents, and other diagonal ones, which greatly eases their use in, for example,
relativistic mean-field theories. For this reason it has been studied extensively, see, e.g., the
papers by Y. Takahashi [2] or generalizations to SU(n) [3].
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In the context of nonlinear self-coupling of meson fields, higher-order versions of the
Fierz transformation have become of interest (for a review see [4]). If we express the order
as the number of0-matrices involved, the above Eq. (1) is of second order, and in this paper
we will be concerned with constructing expansions in third order,

(ā0i b)(b̄0 j c)(c̄0ka) =
16∑

l ,m,n=1

clmn(ā0l a)(b̄0mb)(c̄0nc), (3)

and in fourth order,

(ā0i b)(b̄0 j c)(c̄0kd)(d̄0l a) =
16∑

m,n,p,q=1

cmnpq(ā0ma)(b̄0nb)(c̄0pc)(d̄0qd). (4)

Here, a general computer-based solution method will be discussed, using either computer
algebra systems such asMathematica[5] or conventional programming, which allows exact
manipulation of fractional complex numbers. Although this approach is quite general, it
will be applied preferentially to the case of symmetrized matrix elements with only the
matrix1 appearing in the expression to be expanded.

2. SYMMETRIZATION

In many applications, the wave function indices will all be summed over, so that it is
sufficient to deal with an expression symmetrized over the indices. Thus, on the left-hand
side of Eq. (1) in the second-order case we can write∑

ab

(ā0i b)(b̄0 j a) = 1

2

∑
ab

[
(ā0i b)(b̄0 j a)+ (b̄0i a)(ā0 j b)

]
, (5)

and the right-hand side of Eq. (1) will be symmetrized exactly in the same way.
Using the notation

∑
{abc...} to refer to the sum over all permutations of the symbols

a, b, c . . . , we can reformulate the Fierz transformation problem for the symmetrized
matrix element as ∑

{ab}
(ā0i b)(b̄0 j a) =

∑
{ab}

∑
kl

ckl(ā0ka)(b̄0l b), (6)

where the factor12 has been dropped on both sides.
It is important to realize that because of the product structure, the right-hand side is

symmetric under an exchange of the0 matrices as well. It is thus useful to introduce a
notation for symmetrized terms,

0k ⊗ 0l =
∑
{ab}
(ā0ka)(b̄0l b) = (ā0ka)(b̄0l b)+ (ā0l a)(b̄0kb), (7)

which can easily be generalized to higher order; for example, in third order the symmetrized
problem becomes ∑

{abc}
(āib)(b̄ jc)(c̄ka) =

∑
l≤m≤n

clmn0l ⊗ 0m⊗ 0n, (8)
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with

0l ⊗ 0m⊗ 0n =
∑
{abc}

(ā0l a)(b̄0mb)(c̄0nc), (9)

where symmetrization could equivalently be carried out in the indicesl ,m, n instead of
a, b, c. Terms of fourth and higher orders are defined analogously.

3. ALGEBRAIC DETERMINATION OF THE EXPANSION

The second-order Fierz transformation as defined in Eq. (1) can be viewed as a system of
equations obtained by comparing coefficients in the 44 = 162 dimensional space spanned
by the spinorsψa, ψb, ψ̄a, andψ̄b. The coefficients are given by the components of the
0-matrices and thus can be expressed as complex integers. The unknownsckl are 16× 16
in number, so that we have exactly the right number of equations, and since the0-matrices
form a basis for the 4× 4 complex matrices, the decomposition (1) is always possible.

The solution of this system of linear equations can be carried out using the standard
Gauss elimination algorithm, provided that the coefficients are not treated in floating point
arithmetic, but as exact complex fractions.

For third-order Fierz transformations, the dimension of the system of equations is 163

and it is 164 for fourth order; that is, the complexity in going from second order to fourth
order is in the ratio 1:16:256. For the latter case, practical solution would require substantial
computing resources, but fortunately in cases of practical interest the number of terms in
the expansion can be reduced substantially by symmetry and invariance requirements. In
the symmetrized case of the preceeding section, for example, the dimension in fourth order
is reduced by the number of permutations 4!.

4. SELECTION OF THE TERMS IN THE EXPANSION

The expansion into products of the diagonal matrix elements of the0-matrices is always
possible, but usually is not the most useful expression of the Fierz transformation. To see
this, let us look at an important special case: that of identity matrices on the left-hand side.
The decomposition problem thus is

(āb)(b̄a) =
∑

jk

cjk(ā0 j a)(b̄0kb), (10)

or, in symmetrized form, ∑
{ab}
(āb)(b̄a) =

∑
jk

cjk0 j ⊗ 0k. (11)

Since the left-hand side is a Dirac scalar, this means that the right-hand side also can
contain only scalar combinations of0-matrices. The only scalar combinations built out
of products of two0-matrices are1⊗ 1, γ5⊗ γ5, γµ ⊗ γ µ, γ5γµ ⊗ γ5γ

µ, andσµν ⊗ σµν ,
assuming the familiar index summation convention. The Fierz transformation problem in
this case thus can be restated as (note that here because of the complete symmetry of all
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terms, the symmetrization can be omitted)

(āb)(b̄a) = c1(āa)(b̄b)+ c2(āγ5a)(b̄γ5b)+ c3(āγµa)(b̄γ µb)

+ c4(āγ5γµa)(b̄γ5γ
µb)+ c5(āσµνa)(b̄σ

µνb). (12)

Note that symmetrization works slightly differently in this case: the scalar products
sometimes make certain index combinations appear repeatedly in the expansion, but it is
still sufficient to include only one ordering of the0 matrices in the symmetrized terms.

Eq. (12) corresponds to 256 equations for the five unknown coefficients. Clearly, most
equations will be redundant; eliminating them from the statement of the problem, however,
turns out to complicate the solution, but the high degree of redundancy provides a welcome
check for completeness and consistency of the assumed decomposition.

5. SOLUTION FOR THE FOURTH-ORDER CASE

Equation (12) will be used to illustrate the method of solution. Actually, two different
approaches were used depending on the complexity of the problem.

For second and third order a very simple but flexible approach was implemented in
Mathematica. The spinors were expressed as four-component vectors containing symbols
of the form

ψa→ (a1,a2,a3,a4), ψ̄a→ (aa1,aa2,aa3,aa4),

ψb→ (b1, b2, b3, b4), ψ̄b→ (bb1, bb2, bb3, bb4).
(13)

The scalar products with the0-matrices can then be evaluated straightforwardly, yielding
a representation of Eq. (12) as a linear equation in the coefficientsci with coefficients
biquadratic in the spinor components. The symmetrization is done automatically. The
coefficients are determined successively by choosing one term in whichc1 occurs; if this
is, e.g.,c1 aa1a2bb2b4, the coefficient ofaa1a2bb2b4 is extracted from the equation,
yielding a linear equation in theci alone, which is solved forc1. This is inserted into the
equation, reducing the number of unknown coefficients by one, and the process is repeated
until all ci have been found. If any terms are then left in the equation, the expansion was
not complete.

While this is a very straightforward and not particularly efficient solution, the steps can be
automated using built-in functions, and it is quite flexible, since new terms can be added by
simply writing them down as symbolic expressions in the spinors and0-matrices. For the
fourth order, however, this process turned out to be too inefficient, so that, as an alternative,
a Fortran-90 code was developed that uses a data type for fractional complex numbers and
straightforward Gauss elimination. Programming the individual terms, though, requires
substantially more coding.

Specifically, the four independent components of each spinor are represented by a number
0, 1, 2, 3, corresponding to a two-bit integer. The four spinor indices are then combined
into an 8-bit index, which indicates the index of the equation to which this combination
contributes. For example, the expression(āb)(b̄a) has (as only one of the nonvanishing
matrix elements) a value of one for the 3-component of spinorsψ̄a andψb and the 2-
component of spinors̄ψb andψa. If we arrange the index with̄ψa, ψa, ψ̄b, ψb in order of
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TABLE I

Terms and Expansion Coefficients Appearing

in Second Order

Term Coefficient

1⊗ 1 1
4

γ5 ⊗ γ5
1
4

γµ ⊗ γ µ 1
4

γ5γµ ⊗ γ5γ
µ − 1

4

σµν ⊗ σµν 1
8

decreasing magnitude, the index for the equation will be

3× 43+ 2× 42+ 2× 4+ 3= 111010112 = 235. (14)

The program will loop through all spinor component combinations and add the generated
coefficients at the corresponding position in the system of equations.

To help with the proper selection of terms in the expansion, the code checks whether
any of the coefficients of the term being generated are nonzero, since symmetry may cause
cancellation in a nonobvious way, and also whether a term is directly proportional to one
previously generated.

The system of equations is then solved using Gauss elimination, where more general
linear dependences will become apparent. If the elimination does not solveall of the
equations, it is clear that the decomposition is not complete and this is then indicated.

6. RESULTS

As sample results, we give the decomposition of the symmetrized term in second, third,
and fourth order for the case of identity matrices, as tables of terms with the corresponding
expansion coefficients. For the higher-order terms, some remarks about new features are
made.

6.1. Second Order

The result for second order is

(āb)(b̄a) = 1

4
(āa)(b̄b)+ 1

4
(āγ5a)(b̄γ5b)+ 1

4
(āγµa)(b̄γ µb)

− 1

4
(āγ5γµa)(b̄γ5γ

µb)+ 1

8
(āσµνa)(b̄σ

µνb). (15)

This result is repeated in Table I in order to indicate the correct reading of the tables for
higher order, where, however, a full symmetrization of both sides of the equation becomes
necessary according to Eqs. (8) and (9).

6.2. Third Order

In third order, the symmetrization is no longer trivial as it was in the second-order case.
It may be surprising that terms withγ5σµν must be included; these can be equivalently



FIERZ TRANSFORMATION FOR HIGHER ORDERS 243

TABLE II

Terms and Expansion Coefficients Appearing

in Third Order

Term Coefficient

1⊗ 1⊗ 1 1
16

1⊗ γ5 ⊗ γ5
3
16

1⊗ γµ ⊗ γ µ 3
16

1⊗ γ5γµ ⊗ γ5γ
µ − 3

16

1⊗ σµν ⊗ σµν 3
32

γµ ⊗ γ5γν ⊗ γ5σ
µν − 31

8

γ5 ⊗ σµν ⊗ γ5σ
µν 3

32

formulated using the identity

γ5σµν = i

2
εκλµνσ

κλ, (16)

but retaining the matrixγ5 makes the space-reversal properties of the terms more readily
apparent. Note that either way our basis still consists of only 16 linearly independent
matrices. The resulting transformation is given in Table II.

6.3. Fourth Order

In fourth order the number of possible terms becomes larger and it is difficult to see
which are independent. Using the basic building blocks1, γ5, γµ, γ5γµ, σµν , andγ5σµν in
all possible combinations fulfilling the condition of coupling to a Dirac scalar, which also
implies an even number ofγ5-matrices, proves sufficient, but also leads to many dependent
terms which are eliminated with the program’s help. The final result is given in Table III.

7. OTHER APPLICATIONS

A similar method can be applied to nonsymmetric and nonscalar terms; in this case of
course more terms will appear in the expansion. They can be constructed as before from
the basic building blocks1, γ5, γµ, γ5γµ, σµν , andγ5σµν in a way that yields the desired
Lorentz transformation properties.

As an example, the following decomposition was obtained:

(āσµνb)(b̄γ
νa) = −1

4
(āγ νa)(b̄σµνb)− 1

4
(āσµνa)(b̄γ

νb)

+ 3i

4
(āγµa)(b̄b)− 3i

4
(āa)(b̄γµb)

+ 3i

4
(āγ5γµa)(b̄γ5b)+ 3i

4
(āγ5a)(b̄γ5γµb)

− 1

4
(āγ5γ

νa)(b̄γ5σµνb)+ 1

4
(āγ5σµνa)(b̄γ5γ

νb). (17)
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TABLE III

Terms and Expansion Coefficients Appearing in

Fourth Order

Term Coefficient

1⊗ 1⊗ 1⊗ 1 1
64

1⊗ 1⊗ γ5 ⊗ γ5
3
32

1⊗ 1⊗ γµ ⊗ γ µ 3
32

1⊗ 1⊗ γ5γµ ⊗ γ5γ
µ − 3

32

1⊗ 1⊗ σµν ⊗ σµν 3
64

1⊗ γ5 ⊗ σµν ⊗ γ5σ
µν 3

32

1⊗ γµ ⊗ γ5γν ⊗ γ5σ
µν − 3i

8

γ5 ⊗ γ5 ⊗ γ5 ⊗ γ5
1
64

γ5 ⊗ γ5 ⊗ γµ ⊗ γ µ 1
32

γ5 ⊗ γ5 ⊗ γ5γµ ⊗ γ5γ
µ − 1

32

γ5 ⊗ γ5 ⊗ σµν ⊗ σµν 3
64

γ5 ⊗ γµ ⊗ γ5γν ⊗ σµν − 1i
8

γµ ⊗ γ µ ⊗ γν ⊗ γ ν 1
64

γµ ⊗ γ µ ⊗ γ5γν ⊗ γ5γ
ν − 3

32

γµ ⊗ γ ν ⊗ γ5γµ ⊗ γ5γ
ν 1

16

γλ ⊗ γ λ ⊗ σµν ⊗ σµν 3
64

γλ ⊗ γ µ ⊗ σµν ⊗ σλν − 1
16

γ5γµ ⊗ γ5γ
µ ⊗ γ5γν ⊗ γ5γ

ν 1
64

γ5γλ ⊗ γ5γ
λ ⊗ σµν ⊗ σµν − 3

64

γ5γλ ⊗ γ5γ
µ ⊗ σµν ⊗ σλν 1

16

σµν ⊗ σµν ⊗ σκλ ⊗ σ κλ 3
256

σµν ⊗ σλν ⊗ σλκ ⊗ σµκ − 1
64

Those terms in which the exchange of indicesa andb changes the sign will drop out in the
symmetrized version of this result, which is

1

2

[
(āσµνb)(b̄γ

νa)+ (b̄σµνa)(āγ νb)
]

= − 1

4
(āγ νa)(b̄σµνb)− 1

4
(āσµνa)(b̄γ

νb)

+ 3i

4
(āγ5γµa)(b̄γ5b)+ 3i

4
(āγ5a)(b̄γ5γµb). (18)

8. SUMMARY

Once it is realized that constructing a Fierz transformation of any order essentially just
means solving a linear system of equations with fractional complex coefficients, standard
techniques of numerical analysis are sufficient to solve the problem. The calculation is
now feasible up to fourth order, and the main work that remains is the expression of the
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transformation through meaningful couplings of the0matrices, which still requires treating
each transformation separately. Our work here demonstrates that tractable solutions may
be possible for each of these cases. CommentedMathematicaand Fortran-90 programs are
available from the authors.

ACKNOWLEDGMENTS

This work was supported by the Bundesministerium f¨ur Bildung und Forschung, by the Gesellschaft f¨ur
Schwerionenforschung, and by the U.S. Department of Energy under contract W-7405-ENG-36. The authors are
grateful to J. Reinhard and S. Schramm for critical comments.

REFERENCES

1. M. Fierz,Z. Physik104, 553 (1937).

2. Y. Takahashi,J. Math. Phys.24, 1783 (1983).

3. H.-S. Zong, F. Wang, and J.-L. Ping,Commun. Theor. Phys.22, 479 (1994).

4. T. Hoch, D. Madland, P. Manakos, T. Mannel, B. A. Nikolaus, and D. Strottman,Phys. Rep.242, 253 (1994).

5. S. Wolfram,The Mathematica Book,4th ed. (Cambridge University Press, Cambridge, MA, 1999).


	1. THE PROBLEM
	2. SYMMETRIZATION
	3. ALGEBRAIC DETERMINATION OF THE EXPANSION
	4. SELECTION OF THE TERMS IN THE EXPANSION
	5. SOLUTION FOR THE FOURTH-ORDER CASE
	6. RESULTS
	TABLE I
	TABLE II
	TABLE III

	7. OTHER APPLICATIONS
	8. SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES

